By Topic

Input-output HMMs for sequence processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bengio, Y. ; Dept. of Comput. Sci. & Oper. Res., Montreal Univ., Que., Canada ; Frasconi, P.

We consider problems of sequence processing and propose a solution based on a discrete-state model in order to represent past context. We introduce a recurrent connectionist architecture having a modular structure that associates a subnetwork to each state. The model has a statistical interpretation we call input-output hidden Markov model (IOHMM). It can be trained by the estimation-maximization (EM) or generalized EM (GEM) algorithms, considering state trajectories as missing data, which decouples temporal credit assignment and actual parameter estimation. The model presents similarities to hidden Markov models (HMMs), but allows us to map input sequences to output sequences, using the same processing style as recurrent neural networks. IOHMMs are trained using a more discriminant learning paradigm than HMMs, while potentially taking advantage of the EM algorithm. We demonstrate that IOHMMs are well suited for solving grammatical inference problems on a benchmark problem. Experimental results are presented for the seven Tomita grammars, showing that these adaptive models can attain excellent generalization

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 5 )