By Topic

An improved radial basis function network for visual autonomous road following

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rosenblum, M. ; Unmanned Ground Vehicle Program, Lockheed Martin Astronaut., Denver, CO, USA ; Davis, L.S.

We have developed a radial basis function network (RBFN) for visual autonomous road following. Preliminary testing of the RBFN was done using a driving simulator, and the RBFN was then installed on an actual vehicle at Carnegie Mellon University for testing in an outdoor road-following application. In our first attempts, the RBFN had some success, but it experienced some significant problems such as jittery control and driving failure. Several improvements have been made to the original RBFN architecture to overcome these problems in simulation and more importantly in actual road following, and the improvements are described in this paper

Published in:

Neural Networks, IEEE Transactions on  (Volume:7 ,  Issue: 5 )