By Topic

Limitations of Poole–Frenkel Conduction in Bilayer \hbox {HfO}_{2}/\hbox {SiO}_{2} MOS Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Southwick, R.G. ; Dept. of Electr. & Comput. Eng., Boise State Univ., Boise, ID, USA ; Reed, J. ; Buu, C. ; Butler, R.
more authors

The gate leakage current of metal-oxide-semiconductors (MOSs) composed of hafnium oxide (HfO2) exhibits temperature dependence, which is usually attributed to the standard Poole-Frenkel (P-F) transport model. However, the reported magnitudes of the trap barrier height vary significantly. This paper explores the fundamental challenges associated with applying the P-F model to describe transport in HfO2/ SiO2 bilayers in n/p MOS field-effect transistors composed of 3- and 5-nm HfO2 on 1.1-nm SiO2 dielectric stacks. The extracted P-F trap barrier height is shown to be dependent on several variables including the following: the temperature range, method of calculating the electric field, electric-field range considered, and HfO2 thickness. P-F conduction provides a consistent description of the gate leakage current only within a limited range of the current values while failing to explain the temperature dependence of the 3-nm HfO2 stacks for gate voltages of less than 1 V, leaving other possible temperature-dependent mechanisms to be explored.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:10 ,  Issue: 2 )