By Topic

Double Flying Capacitor Multicell Converter Based on Modified Phase-Shifted Pulsewidth Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sadigh, A.K. ; Fac. of Electr. & Comput. Eng., Univ. of Tabriz, Tabriz, Iran ; Hosseini, S.H. ; Sabahi, M. ; Gharehpetian, G.B.

Multilevel converters are very interesting alternatives for medium and high-power applications. The main reason is the increase in the number of output voltage levels and its apparent frequency. This paper presents a new configuration of flying capacitor multicell (FCM) converter. The main advantages of the proposed converter, in comparison with FCM and stacked multicell converters, are doubling the rms and the number of output voltage levels, improving the output voltage frequency spectrum, and canceling the midpoint of dc source. This progress is achieved by adding only two low-frequency switches to the conventional configuration of FCM converter while the number of high-frequency switches and capacitors, voltage ratings of capacitors and switches, and the number of high-frequency switchings during a full cycle are kept constant. This converter is controlled by a modified phase-shifted pulsewidth modulation, therefore, the self-balancing property of the flying capacitor converter is maintained in the proposed converter. The circuit is simulated using power systems computer-aided design/electromagnetic transients in DC systems (EMTDC) software and simulation results are presented to validate the effectiveness and advantages of the proposed configuration as well as its control strategy. Additionally, measurements taken from an experimental setup are presented in order to study the practical configuration.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )