By Topic

Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Radu Bogdan Rusu ; Intelligent Autonomous Systems, Technische Universität München, Germany ; Nico Blodow ; Zoltan Csaba Marton ; Michael Beetz

In this paper we present a framework for 3D geometric shape segmentation for close-range scenes used in mobile manipulation and grasping, out of sensed point cloud data. Our proposed approach proposes a robust geometric mapping pipeline for large input datasets that extracts relevant objects useful for a personal robotic assistant to perform manipulation tasks. The objects are segmented out from partial views and a reconstructed model is computed by fitting geometric primitive classes such as planes, spheres, cylinders, and cones. The geometric shape coefficients are then used to reconstruct missing data. Residual points are resampled and triangulated, to create smooth decoupled surfaces that can be manipulated. The resulted map is represented as a hybrid concept and is comprised of 3D shape coefficients and triangular meshes used for collision avoidance in manipulation routines.

Published in:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems

Date of Conference:

10-15 Oct. 2009