By Topic

Learning Posture Invariant Spatial Representations Through Temporal Correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Spratling, M.W. ; Div. of Eng., King''s Coll. London, London, UK

A hierarchical neural network model is used to learn, without supervision, sensory-sensory coordinate transformations like those believed to be encoded in the dorsal pathway of the cerebral cortex. The resulting representations of visual space are invariant to eye orientation, neck orientation, or posture in general. These posture invariant spatial representations are learned using the same mechanisms that have previously been proposed to operate in the cortical ventral pathway to learn object representation that are invariant to translation, scale, orientation, or viewpoint in general. This model thus suggests that the same mechanisms of learning and development operate across multiple cortical hierarchies.

Published in:

Autonomous Mental Development, IEEE Transactions on  (Volume:1 ,  Issue: 4 )