By Topic

Comparison of Hybrid Control Techniques for Buck and Boost DC-DC Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Mariethoz, S. ; Autom. Control Lab., ETH Zurich, Zürich, Switzerland ; Almer, S. ; Baja, M. ; Beccuti, A.G.
more authors

Five recent techniques from hybrid and optimal control are evaluated on two power electronics benchmark problems. The benchmarks involve a number of practically interesting operating scenarios for fixed-frequency synchronous dc-dc converters. The specifications are defined such that good performance can only be obtained if the switched and nonlinear nature of the problem is accounted for during the design phase. A nonlinear action is featured in all methods either intrinsically or as external logic. The designs are evaluated and compared on the same experimental platform. Experiments show that the proposed methods display high performances, while respecting circuit constraints, thus protecting the semiconductor devices. Moreover, the complexity of the controllers is compatible with the high-frequency requirements of the considered application.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:18 ,  Issue: 5 )