By Topic

Using MPI file caching to improve parallel write performance for large-scale scientific applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Liao, Wei-keng ; Northwestern University, Evanston, Illinois ; Ching, Avery ; Coloma, Kenin ; Nisar, Arifa
more authors

Typical large-scale scientific applications periodically write checkpoint files to save the computational state throughout execution. Existing parallel file systems improve such write-only I/O patterns through the use of client-side file caching and write-behind strategies. In distributed environments where files are rarely accessed by more than one client concurrently, file caching has achieved significant success; however, in parallel applications where multiple clients manipulate a shared file, cache coherence control can serialize I/O. We have designed a thread based caching layer for the MPI I/O library, which adds a portable caching system closer to user applications so more information about the application's I/O patterns is available for better coherence control. We demonstrate the impact of our caching solution on parallel write performance with a comprehensive evaluation that includes a set of widely used I/O benchmarks and production application I/O kernels.

Published in:

Supercomputing, 2007. SC '07. Proceedings of the 2007 ACM/IEEE Conference on

Date of Conference:

10-16 Nov. 2007