By Topic

The Impact of Temperature on Outdoor Industrial Sensornet Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Carlo Alberto Boano ; Swedish Institute of Computer Science, Universität zu Lübeck, Institut für Technische Informatik, Kista, Lübeck, SwedenGermany ; Nicolas Tsiftes ; Thiemo Voigt ; James Brown
more authors

Wireless sensor networks are being considered for use in industrial process and control environments. Unlike traditional deployment scenarios for sensor networks, in which energy preservation is the main design principle, industrial environments stress worker safety and uninterrupted production. To fulfill these requirements, sensor networks must be able to provide performance guarantees for radio communication. In this paper, we consider as a case study the deployment of a sensornet in an oil refinery in Portugal, where sensor nodes are deployed outdoors and might experience high temperature fluctuations. We investigate how the variations of ambient temperature influence data delivery performance and link quality in low-power radio communications. We also study the impact that specific implementation requirements, such as the ATEX fire-safety regulations, can have on the design of the overall network. Our experiments show that temperature directly affects the communication between sensor nodes, and that significantly less transmission power is required at low temperatures. We further illustrate that it is possible to save up to 16% energy during nights and cold periods of the year, while still ensuring reliable communication among sensor nodes. In view of these experimental results, we elaborate on how the temperature influences both the design and the deployment of wireless sensor networks in industrial environments.

Published in:

IEEE Transactions on Industrial Informatics  (Volume:6 ,  Issue: 3 )