By Topic

Global Asymptotic Stability of Reaction–Diffusion Cohen–Grossberg Neural Networks With Continuously Distributed Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhanshan Wang ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Huaguang Zhang

This paper is concerned with the global asymptotic stability of a class of reaction-diffusion Cohen-Grossberg neural networks with continuously distributed delays. Under some suitable assumptions and using a matrix decomposition method, we apply the linear matrix inequality (LMI) method to propose some new sufficient stability conditions for the reaction-diffusion Cohen-Grossberg neural networks with continuously distributed delays. The obtained results are easy to check and improve upon the existing stability results. Some remarks are given to show the advantages of the obtained results over the previous results. An example is also given to demonstrate the effectiveness of the obtained results.

Published in:

IEEE Transactions on Neural Networks  (Volume:21 ,  Issue: 1 )