By Topic

Error-energy bounds for adaptive gradient algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sayed, A.H. ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; Rupp, M.

The paper establishes robustness, optimality, and convergence properties of the widely used class of instantaneous-gradient adaptive algorithms. The analysis is carried out in a purely deterministic framework and assumes no a priori statistical information. It employs the Cauchy-Schwarz inequality for vectors in an Euclidean space and derives local and global error-energy bounds that are shown to highlight, as well as explain, relevant aspects of the robust performance of adaptive gradient filters (along the lines of H theory)

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 8 )