Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Real-Time Detection of Apneas on a PDA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Burgos, A. ; Univ. of the Basque Country, San Sebastian, Spain ; Goñi, A. ; Illarramendi, A. ; Bermudez, J.

Patients suspected of suffering sleep apnea and hypopnea syndrome (SAHS) have to undergo sleep studies such as expensive polysomnographies to be diagnosed. Healthcare professionals are constantly looking for ways to improve the ease of diagnosis and comfort for this kind of patients as well as reducing both the number of sleep studies they need to undergo and the waiting times. Relating to this scenario, some research proposals and commercial products are appearing, but all of them record the physiological data of patients to portable devices and, in the morning, these data are loaded into hospital computers where physicians analyze them by making use of specialized software. In this paper, we present an alternative proposal that promotes not only a transmission of physiological data but also a real-time analysis of these data locally at a mobile device. For that, we have built a classifier that provides an accuracy of 93% and a receiver operating characteristic-area under the curve (ROC-AUC) of 98.5% on SpO2 signals available in the annotated Apnea-ECG Database. This local analysis allows the detection of anomalous situations as soon as they are generated. The classifier has been implemented taking into consideration the restricted resources of mobile devices.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 4 )