Cart (Loading....) | Create Account
Close category search window


Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Abad-Manterola, P. ; California Inst. of Technol., Pasadena, CA, USA ; Edlund, J.A. ; Burdick, J.W. ; Wu, A.
more authors

Recent scientific findings suggest that some of the most interesting sites for future exploration of planetary surfaces lie in terrains that are currently inaccessible to conventional robotic rovers. To provide robust and flexible access to these terrains, we have been developing Axel, the robotic rover. Axel is a lightweight two-wheeled vehicle that can access steep terrains and negotiate relatively large obstacles because of its actively managed tether and novel wheel design. This article reviews the Axel system and focuses on those system components that affect Axel's steep terrain mobility. Experimental demonstrations of Axel on sloped and rocky terrains are presented.

Published in:

Robotics & Automation Magazine, IEEE  (Volume:16 ,  Issue: 4 )

Date of Publication:

December 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.