By Topic

Architectural evaluation of 3D stacked RRAM caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dean L. Lewis ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, USA ; Hsien-Hsin S. Lee

The first memristor, originally theorized by Dr. Leon Chua in 1971, was identified by a team at HP Labs in 2008. This new fundamental circuit element is unique in that its resistance changes as current passes through it, giving the device a memory of the past system state. The immediately obvious application of such a device is in a non-volatile memory, wherein high- and low-resistance states are used to store binary values. A memory array of memristors forms what is called a resistive RAM or RRAM. In this paper, we survey the memristors that have been produced by a number of different research teams and present a point-by-point comparison between DRAM and this new RRAM, based on both existent and expected near-term memristor devices. In particular, we consider the case of a die-stacked 3D memory that is integrated onto a logic die and evaluate which memory is best suited for the job. While still suffering a few shortcomings, RRAM proves itself a very interesting design alternative to well-established DRAM technologies.

Published in:

3D System Integration, 2009. 3DIC 2009. IEEE International Conference on

Date of Conference:

28-30 Sept. 2009