Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Scalable Variational Integrators for Constrained Mechanical Systems in Generalized Coordinates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johnson, E.R. ; Dept. of Mech. Eng., Northwestern Univ., Chicago, IL, USA ; Murphey, T.D.

We present a technique to implement scalable variational integrators for generic mechanical systems in generalized coordinates. Systems are represented by a tree-based structure that provides efficient means to algorithmically calculate values (position, velocities, and derivatives) needed for variational integration without the need to resort to explicit equations of motion. The variational integrator handles closed kinematic chains, holonomic constraints, dissipation, and external forcing without modification. To avoid the full equations of motion, this method uses recursive equations, and caches calculated values, to scale to large systems by the use of generalized coordinates. An example of a closed-kinematic-chain system is included along with a comparison with the open-dynamics engine (ODE) to illustrate the scalability and desirable energetic properties of the technique. A second example demonstrates an application to an actuated mechanical system.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 6 )