By Topic

An Efficient GPU Implementation for Large Scale Individual-Based Simulation of Collective Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ugo Erra ; Dipt. di Mat. e Inf., Univ. della Basilicata, Italy ; Bernardino Frola ; Vittorio Scarano ; Iain Couzin

In this work we describe a GPU implementation for an individual-based model for fish schooling. In this model each fish aligns its position and orientation with an appropriate average of its neighbors' positions and orientations. This carries a very high computational cost in the so-called nearest neighbors search. By leveraging the GPU processing power and the new programming model called CUDA we implement an efficient framework which permits to simulate the collective motion of high-density individual groups. In particular we present as a case study a simulation of motion of millions of fishes. We describe our implementation and present extensive experiments which demonstrate the effectiveness of our GPU implementation.

Published in:

High Performance Computational Systems Biology, 2009. HIBI '09. International Workshop on

Date of Conference:

14-16 Oct. 2009