By Topic

Resolution mosaic-based Smart Camera for video surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mohammed A-Megeed Salem ; Ain Shams University, Faculty of Computer and Information Sciences, Abbassia 11566, Cairo, Egypt ; Kristian Klaus ; Frank Winkler ; Beate Meffert

Video surveillance is one of the most data intensive applications. A typical video surveillance system consists of one or multiple video cameras, a central storage unit, and a central processing unit. At least two bottlenecks exist: First, the transmission capacity is limited, especially for raw data. Second, the central processing unit has to process the incoming data to give results in real time. Therefore, we propose an FPGA-based embedded camera system which performs all steps of image acquisition, region of interest extraction, generation of a multiresolution image, and image transmission. The proposed pipeline-based architecture allows a real time wavelet-based image segmentation and a detection of moving objects for surveillance purposes. The system is integrated in a single FPGA using external RAM as storage for images and for a Linux operating system which controls the data flow. With the pipeline concept and a Linux device driver it is possible to create a system for streaming the results of an image processing through a GbE interface. A real time processing is achieved. The camera transmits the captured images with 30 Mpixel/s, but the system is able to process 100 Mpixel/s.

Published in:

Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference on

Date of Conference:

Aug. 30 2009-Sept. 2 2009