By Topic

A physical-level study of the compacted matrix instruction scheduler for dynamically-scheduled superscalar processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elham Safi ; Electrical and Computer Engineering Department, University of Toronto, Canada ; Andreas Moshovos ; Andreas Veneris

This work studies physical-level characteristics of the recently proposed compacted matrix instruction scheduler for dynamically-scheduled, superscalar processors. Previous work focused on the matrix scheduler's architecture and argued in support of its speed and scalability advantages. However, no physical-level implementation or models were reported for it. Using full-custom layouts in a commercial 90 nm fabrication technology, this work investigates the latency and energy variations of the compacted matrix and its accompanying logic as a function of the issue width, the window size, and the number of global recovery checkpoints. This work also proposes an energy optimization that throttles unnecessary pre-charges and evaluations. This optimization reduces energy by 10% and 18% depending on the scheduler size.

Published in:

Systems, Architectures, Modeling, and Simulation, 2009. SAMOS '09. International Symposium on

Date of Conference:

20-23 July 2009