Cart (Loading....) | Create Account
Close category search window
 

OpenMP extensions for FPGA accelerators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Reconfigurable computing is one of the paths to explore towards low-power supercomputing. However, programming these reconfigurable devices is not an easy task and still requires significant research and development efforts to make it really productive. In addition, the use of these devices as accelerators in multicore, SMPs and ccNUMA architectures adds an additional level of programming complexity in order to specify the offloading of tasks to reconfigurable devices and the interoperability with current shared-memory programming paradigms such as openMP. This paper presents extensions to openMP 3.0 that try to address this second challenge and an implementation in a prototype runtime system. With these extensions the programmer can easily express the offloading of an already existing reconfigurable binary code (bitstream) hiding all the complexities related with device configuration, bitstream loading, data arrangement and movement to the device memory. Our current prototype implementation targets the SGI Altix systems with RASC blades (based on the Virtex 4 FPGA). We analyze the overheads introduced in this implementation and propose a hybrid host/device operational mode to hide some of these overheads, significantly improving the performance of the applications. A complete evaluation of the system is done with a matrix multiplication kernel, including an estimation considering different FPGA frequencies.

Published in:

Systems, Architectures, Modeling, and Simulation, 2009. SAMOS '09. International Symposium on

Date of Conference:

20-23 July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.