By Topic

A mixed hardware-software approach to flexible Artificial Neural Network training on FPGA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ramon J. Aliaga ; Institute for the Implementation of Advanced Information and Communication Technology (ITACA), Universidad Politécnica de Valencia, 46022, Spain ; Rafael Gadea ; Ricardo J. Colom ; Joaquin Cerda
more authors

FPGAs offer a promising platform for the implementation of artificial neural networks (ANNs) and their training, combining the use of custom optimized hardware with low cost and fast development time. However, purely hardware realizations tend to focus on throughput, resorting to restrictions on applicable network topology or low-precision data representation, whereas flexible solutions allowing a wide variation of network parameters and training algorithms are usually restricted to software implementations. This paper proposes a mixed approach, introducing a system-on-chip (SoC) implementation where computations are carried out by a high efficiency neural coprocessor with a large number of parallel processing elements. System flexibility is provided by on-chip software control and the use of floating-point arithmetic, and network parallelism is exploited through replicated logic and application-specific coprocessor architecture, leading to fast training time. Performance results and design limitations and trade-offs are discussed.

Published in:

Systems, Architectures, Modeling, and Simulation, 2009. SAMOS '09. International Symposium on

Date of Conference:

20-23 July 2009