By Topic

Analysis and Design of High-Frequency Isolated Dual-Bridge Series Resonant DC/DC Converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaodong Li ; Fac. of Inf. Technol., Macau Univ. of Sci. & Technol., Macau, China ; Bhat, A.K.S.

Bidirectional dual-bridge dc/dc converter with high frequency isolation is gaining more attentions in renewable energy system due to small size and high-power density. In this paper, a dual-bridge series resonant dc/dc converter is analyzed with two simple modified ac equivalent circuit analysis methods for both voltage source load and resistive load. In both methods, only fundamental components of voltages and currents are considered. All the switches may work in either zero-voltage-switching or zero-current-switching for a wide variation of voltage gain, which is important in renewable energy generation. It is also shown in the second method that the load side circuit could be represented with an equivalent impedance. The polarity of cosine value of this equivalent impedance angle reveals the power flow direction. The analysis is verified with computer simulation results. Experimental data based on a 200 W prototype circuit is included for validation purpose.

Published in:

Power Electronics, IEEE Transactions on  (Volume:25 ,  Issue: 4 )