By Topic

TE Versus TM for the Shape Reconstruction of 2-D PEC Targets Using the Level-Set Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hajihashemi, M.R. ; Dept. of Electr. Eng., Univ. of Arkansas, Fayetteville, AR, USA ; El-Shenawee, M.

The transverse electric (TE) polarization for shape reconstruction of perfect electric conducting 2-D targets is presented. The deformation velocity for the TE polarization case is implemented in the level-set algorithm. A comparison between the reconstruction CPU time between the TE and transverse magnetic (TM) polarizations is discussed. The numerical results show that retrieving the shape and location of multiple targets of arbitrary cross sections becomes computationally intensive when illumination with TE-polarized waves is used. If the orientation of the unknown cylinders is a priori known, the TM-polarized waves provide faster reconstruction results with the same accuracy compared with the TE-polarized waves. Upon corrupting the synthetic data with Gaussian noise up to signal-to-noise ratio of 5 dB, the TM polarization seems to provide more accurate results compared with the TE case.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:48 ,  Issue: 3 )