By Topic

Design Compact Recognizers of Handwritten Chinese Characters Using Precision Constrained Gaussian Models, Minimum Classification Error Training and Parameter Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yongqiang Wang ; Microsoft Res. Asia, Beijing, China ; Qiang Huo

In our previous work, a precision constrained Gaussian model (PCGM) was proposed for character modeling to design compact recognizers of handwritten Chinese characters. A maximum likelihood training procedure was developed to estimate model parameters from training data. In this paper, we extend the above work by using minimum classification error (MCE) training to improve recognition accuracy and split vector quantization technique to compress model parameters. Compared with the state-of-the-art MCE-trained and compressed classifiers based on modified quadratic discriminant function, PCGM-based classifiers can achieve much better memory-accuracy tradeoff, therefore offer a good solution to designing compact handwriting recognition systems for East Asian languages such as Chinese, Japanese, and Korean.

Published in:

2009 10th International Conference on Document Analysis and Recognition

Date of Conference:

26-29 July 2009