By Topic

Near Optimal Ground Support in Multi-Spacecraft Missions: A GA Model and its Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tapan P. Bagchi ; Indian Institute of Technology Kharagpur

This study addresses the optimal allotment of ground station support time to low Earth orbit (LEO) spacecraft with clashing radio visibilities. LEOs now form a critical global infrastructure for natural resource management, rescue, crop yield estimation, flood control, communication, and space research and travel support. In the multi-spacecraft scenario, ground support becomes complex because of spacecraft-specific constraints, station configuration, spacecraft priorities and priorities of payload and special operations. A generalization of the classical product mix problem, spacecraft support is NP-complete and more complex than the former because of arbitrarily defined profitability profile. Genetic algorithms (GA) are used to near optimally resolve visibility clashes. It concludes with the illustration of real life spacecraft support optimization problems routinely faced by mission managers. A spin-off of this work is that it can enable the decision maker to also determine optimal ground station locations and support capability deployment in diverse planning scenarios.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:45 ,  Issue: 3 )