By Topic

A Gaussian Mixture PHD Filter for Jump Markov System Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Syed Ahmed Pasha ; The University of New South Wales ; Ba-Ngu Vo ; Hoang Duong Tuan ; Wing-Kin Ma

The probability hypothesis density (PHD) filter is an attractive approach to tracking an unknown and time-varying number of targets in the presence of data association uncertainty, clutter, noise, and detection uncertainty. The PHD filter admits a closed-form solution for a linear Gaussian multi-target model. However, this model is not general enough to accommodate maneuvering targets that switch between several models. In this paper, we generalize the notion of linear jump Markov systems to the multiple target case to accommodate births, deaths, and switching dynamics. We then derive a closed-form solution to the PHD recursion for the proposed linear Gaussian jump Markov multi-target model. Based on this an efficient method for tracking multiple maneuvering targets that switch between a set of linear Gaussian models is developed. An analytic implementation of the PHD filter using statistical linear regression technique is also proposed for targets that switch between a set of nonlinear models. We demonstrate through simulations that the proposed PHD filters are effective in tracking multiple maneuvering targets.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:45 ,  Issue: 3 )