By Topic

MgO-Based Epitaxial Magnetic Tunnel Junctions Using Fe-V Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bonell, F. ; Inst. Jean Lamour, Univ. H. Poincare, Nancy, France ; Andrieu, S. ; Bertran, F. ; Lefevre, P.
more authors

To examine the influence of the barrier quality in fully epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions (MTJs), we propose to use Fe-V alloys as magnetic electrodes. This leads to a reduced misfit with MgO. We actually observe, by high-resolution electron microscopy (HREM) and local strain measurements, that the misfit dislocations density in the MgO barrier is lower when it is grown on Fe-V(001). This improvement of the crystalline quality of the MgO barrier actually leads to a significant increase of the tunnel magneto-resistance (TMR), despite the loss of spin polarization (SP) in these alloys, which was measured by spin-polarized X-ray photoelectron spectroscopy (SR-XPS).

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 10 )