By Topic

Perpendicular Magnetic Tunnel Junctions with CoFe/Pd Multilayer Electrodes and an MgO Barrier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Ji-Ho Park ; Lab. for Nanoelectron. & Spintronics, Tohoku Univ., Sendai, Japan ; Ikeda, S. ; Yamamoto, H. ; Gan, H.
more authors

We studied the magnetic and magnetoresistance characteristics of pseudospin-valve magnetic tunnel junctions (MTJs) based on CoFe/Pd multilayer electrodes with perpendicular magnetic anisotropy and an MgO barrier. The MTJs at annealing temperature (T a) of 473 K showed a tunnel-magnetoresistance (TMR) ratio of 1.5%. An fcc (111)-oriented texture of the bottom and top Co90Fe10/Pd multilayer electrodes, together with an imperfectly crystallized MgO, were revealed by cross-sectional TEM images. The TMR properties of perpendicular MTJs with a Co20Fe60B20 or Co50Fe50 layer inserted between the CoFe/Pd multilayer electrodes and the MgO barrier were also studied. The TMR ratio with Co20Fe60B20 insertion was 1.7% at T a= 473 K and monotonically decreased at T a over 523 K. The TMR ratio with Co50Fe50 insertion increased up to 3% at T a= 573 K and then decreased to 0.4% at T a= 598 K. The influence of the Pd layer on CoFeB was studied by using the simplified structures of Pd/CoFeB/MgO/CoFeB/Pd and Ta/CoFeB/MgO/CoFeB/Ta with inplane anisotropy. A former structure with Pd resulted in reduced TMR ratio which decreases with increasing T a, whereas MTJs with a Ta-based structure showed a monotonic increase of a TMR ratio. The low TMR ratio observed in Pd-containing structures appears to result from crystallization of CoFeB in an unfavorable crystal orientation.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 10 )