Cart (Loading....) | Create Account
Close category search window
 

Optimal control of systems with unilateral constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zefran, M. ; GRASP, Pennsylvania Univ., Philadelphia, PA, USA ; Kumar, V.

Problems in robotics and biomechanics such as trajectory planning or resolution of redundancy can be effectively solved using optimal control. Such systems are often subject to unilateral constraints. Examples include tasks involving contacts (e.g., walking, running, multifingered or multiarm manipulation), and other tasks that may not involve contacts but in which the system state or the inputs must satisfy inequality conditions (e.g., limits on actuator forces). This paper shows how problems of optimal control in robotics that involve unilateral constraints can be efficiently solved by first formulating the constrained optimal control problem as an unconstrained problem of the calculus of variations and then solving it using an integral formulation. This method has several advantages over the Pontryagin minimum principle which is traditionally employed to solve such problems. An example of two-arm manipulation with inequality constraints due to Coulomb friction is used to demonstrate the formulation of the problem and the algorithms

Published in:

Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on  (Volume:3 )

Date of Conference:

21-27 May 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.