By Topic

Turn-on Performance of Reverse Blocking IGBT (RB IGBT) and Optimization Using Advanced Gate Driver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Petar J. Grbovic ; Department of R&D, Schneider Toshiba Inverter Europe, Pacy Sur Eure, France ; Francois Gruson ; Nadir Idir ; Philippe Le Moigne

Turn-on performance of a reverse blocking insulated gate bipolar transistor (RB IGBT) is discussed in this paper. The RB IGBT is a specially designed IGBT having ability to sustain blocking voltage of both the polarities. Such a switch shows superior conduction but much worst switching (turn- on) performances compared to a combination of an ordinary IGBT and blocking diode. Because of that, optimization of the switching performance is a key issue that makes the RB IGB not well accepted in the real applications. In this paper, the RB IGBT turn-on losses and reverse recovery current are analyzed for different gate driver techniques, and a new gate driver is proposed. Commonly used conventional gate drivers do not have capability for the switching dynamics optimization. In contrast to this, the new proposed gate driver provides robust and simple way to control and optimize the reverse recovery current and turn-on losses. The collector current slope and reverse recovery current are controlled by the means of the gate emitter voltage control in feedforward manner. In addition, the collector emitter voltage slope is controlled during the voltage falling phase by the means of inherent increase of the gate current. Therefore, the collector emitter voltage tail and the total turn- on losses are reduced, independently on the reverse recovery current. The proposed gate driver was experimentally verified and the results presented and discussed.

Published in:

IEEE Transactions on Power Electronics  (Volume:25 ,  Issue: 4 )