By Topic

An Error-Minimizing Approach to Regularization in Indirect Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Polak, A.G. ; Dept. of Electron. & Photonic Metrol., Wroclaw Univ. of Technol., Wroclaw, Poland

Indirect measurements often amount to the estimation of the parameters of a mathematical model that describes the object under investigation, and this process may numerically be ill conditioned. Various regularization techniques are used to solve the problem. This paper shows that popular regularization methods can be depicted as special cases of a generalized approach based on a penalty term in the minimized criterion function and how different kinds of a priori knowledge can be engaged into each of them. A new function, which depends on the estimate bias and variance, is proposed to find a regularization parameter that minimizes the error of estimation, as well as a novel approach for nonlinear estimation that results in the iterative minimization (IM) method. The superiority of IM with respect to the conventional Marquardt procedure is demonstrated. Based on analysis, it also follows that the regularization technique can be used even in the case of numerically well-conditioned indirect measurements, decreasing the total error of estimation.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 2 )