Cart (Loading....) | Create Account
Close category search window
 

Feasibility Analysis of a Novel Cell Equalizer Topology for Plug-In Hybrid Electric Vehicle Energy-Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cassani, P.A. ; Innovox Inc., Montreal, QC, Canada ; Williamson, S.S.

To meet the stringent cost targets for hybrid electric, plug-in hybrid electric (PHEV), and all-electric vehicles, serious improvement in battery cycle life and safety is undoubtedly essential. More recently, lithium batteries, in the form of lithium-ion, lithium-polymer, or lithium iron phosphate, have profoundly been explored. Despite critical research initiatives, lithium-based batteries have not yet been able to meet the steep energy demands, long lifetime, and low cost, which are unique to vehicular-propulsion applications. One of the most practical techniques of improving overall performance is to use suitable power electronics intensive cell-voltage equalizers in conjunction with onboard energy-storage devices. There have been some interesting developments in this area during the last few years, but cost constraints and high current specifications have prevented the complete deployment of this versatile technology. The purpose of this paper is to introduce a novel configuration for a cell-voltage equalizer, with the potential of fulfilling the expectations of low cost, high current capability, and high efficiency. A comprehensive comparison between the theoretical novel equalizer, a typical equalizer, and the experimental prototype of the novel equalizer will be presented, which will help analyze performance, complexity, and cost.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.