By Topic

Nimrod/K: Towards massively parallel dynamic Grid workflows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abramson, D. ; Fac. of Inf. Technol., Monash Univ., Clayton, VIC, Australia ; Enticott, C. ; Altinas, I.

A challenge for Grid computing is the difficulty in developing software that is parallel, distributed and highly dynamic. Whilst there have been many general purpose mechanisms developed over the years, Grid programming still remains a low level, error prone task. Scientific workflow engines can double as programming environments, and allow a user to compose dasiavirtualpsila Grid applications from pre-existing components. Whilst existing workflow engines can specify arbitrary parallel programs, (where components use message passing) they are typically not effective with large and variable parallelism. Here we discuss dynamic dataflow, originally developed for parallel tagged dataflow architectures (TDAs), and show that these can be used for implementing Grid workflows. TDAs spawn parallel threads dynamically without additional programming. We have added TDAs to Kepler, and show that the system can orchestrate workflows that have large amounts of variable parallelism. We demonstrate the system using case studies in chemistry and in cardiac modelling.

Published in:

High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference for

Date of Conference:

15-21 Nov. 2008