By Topic

Joint Regularization of Phase and Amplitude of InSAR Data: Application to 3-D Reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Denis, L. ; Inst. TELECOM, TELECOM ParisTech, Paris, France ; Tupin, F. ; Darbon, J. ; Sigelle, M.

Interferometric synthetic aperture radar (SAR) images suffer from a strong noise, and their regularization is often a prerequisite for successful use of their information. Independently of the unwrapping problem, interferometric phase denoising is a difficult task due to shadows and discontinuities. In this paper, we propose to jointly filter phase and amplitude data in a Markovian framework. The regularization term is expressed by the minimization of the total variation and may combine different information (phase, amplitude, optical data). First, a fast and approximate optimization algorithm for vectorial data is briefly presented. Then, two applications are described. The first one is a direct application of this algorithm for 3-D reconstruction in urban areas with very high resolution images. The second one is an adaptation of this framework to the fusion of SAR and optical data. Results on aerial SAR images are presented.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 11 )