By Topic

Quantifying Information Leaks in Outbound Web Traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Borders, K. ; Web Tap Security, Inc., Ann Arbor, MI, USA ; Prakash, A.

As the Internet grows and network bandwidth continues to increase, administrators are faced with the task of keeping confidential information from leaving their networks. Todaypsilas network traffic is so voluminous that manual inspection would be unreasonably expensive. In response, researchers have created data loss prevention systems that check outgoing traffic for known confidential information. These systems stop naive adversaries from leaking data, but are fundamentally unable to identify encrypted or obfuscated information leaks. What remains is a high-capacity pipe for tunneling data to the Internet. We present an approach for quantifying information leak capacity in network traffic. Instead of trying to detect the presence of sensitive data-an impossible task in the general case--our goal is to measure and constrain its maximum volume. We take advantage of the insight that most network traffic is repeated or determined by external information, such as protocol specifications or messages sent by a server. By filtering this data, we can isolate and quantify true information flowing from a computer. In this paper, we present measurement algorithms for the Hypertext Transfer Protocol (HTTP), the main protocol for Web browsing. When applied to real Web browsing traffic, the algorithms were able to discount 98.5% of measured bytes and effectively isolate information leaks.

Published in:

Security and Privacy, 2009 30th IEEE Symposium on

Date of Conference:

17-20 May 2009