By Topic

A Synchronization Approach to Trajectory Tracking of Multiple Mobile Robots While Maintaining Time-Varying Formations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong Sun ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon, China ; Can Wang ; Wen Shang ; Gang Feng

In this paper, we present a synchronization approach to trajectory tracking of multiple mobile robots while maintaining time-varying formations. The main idea is to control each robot to track its desired trajectory while synchronizing its motion with those of other robots to keep relative kinematics relationships, as required by the formation. First, we pose the formation-control problem as a synchronization control problem and identify the synchronization control goal according to the formation requirement. The formation error is measured by the position synchronization error, which is defined based on the established robot network. Second, we develop a synchronous controller for each robot's translation to guarantee that both position and synchronization errors approach zero asymptotically. The rotary controller is also designed to ensure that the robot is always oriented toward its desired position. Both translational and rotary controls are supported by a centralized high-level planer for task monitoring and robot global localization. Finally, we perform simulations and experiments to demonstrate the effectiveness of the proposed synchronization control approach in the formation control tasks.

Published in:

Robotics, IEEE Transactions on  (Volume:25 ,  Issue: 5 )