By Topic

Effects of conductor sag on spatial distribution of power line magnetic field

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. V. Mamishev ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; R. D. Nevels ; B. D. Russell

Traditional extremely low frequency (ELF) magnetic field computation techniques assume that the current carrying power line conductors are straight horizontal wires. This assumption results in a model whose magnetic fields are distorted from those produced in reality. An exact solution and an approximation are proposed for modeling magnetic fields produced by the sagged conductors of power lines, by taking advantage of the fact that the equation of the catenary exactly describes the line sag. The proposed approaches differ in the required computational burden and in the precision of the results. A field mapping measurement example illustrates the applicability and the need for this analysis. The relative importance of the catenary effect is discussed

Published in:

IEEE Transactions on Power Delivery  (Volume:11 ,  Issue: 3 )