By Topic

Wireless sensor networks powered by ambient energy harvesting (WSN-HEAP) - Survey and challenges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Winston K. G. Seah ; Networking Protocols Department, Institute for Infocomm Research, Singapore ; Zhi Ang Eu ; Hwee-Pink Tan

Wireless sensor networks (WSNs) research has pre-dominantly assumed the use of a portable and limited energy source, viz. batteries, to power sensors. Without energy, a sensor is essentially useless and cannot contribute to the utility of the network as a whole. Consequently, substantial research efforts have been spent on designing energy-efficient networking protocols to maximize the lifetime of WSNs. However, there are emerging WSN applications where sensors are required to operate for much longer durations (like years or even decades) after they are deployed. Examples include in-situ environmental/habitat monitoring and structural health monitoring of critical infrastructures and buildings, where batteries are hard (or impossible) to replace/recharge. Lately, an alternative to powering WSNs is being actively studied, which is to convert the ambient energy from the environment into electricity to power the sensor nodes. While renewable energy technology is not new (e.g., solar and wind) the systems in use are far too large for WSNs. Those small enough for use in wireless sensors are most likely able to provide only enough energy to power sensors sporadically and not continuously. Sensor nodes need to exploit the sporadic availability of energy to quickly sense and transmit the data. This paper surveys related research and discusses the challenges of designing networking protocols for such WSNs powered by ambient energy harvesting.

Published in:

Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st International Conference on

Date of Conference:

17-20 May 2009