By Topic

Adaptive backstepping control of a wheeled mobile robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nganga-Kouya, D. ; Dept. of Mech. Eng., ENSET, Libreville, Gabon ; Okou, F.A.

This paper proposes an adaptive nonlinear controller to stabilize an autonomous wheeled mobile robot. The controller equations are obtained following a backstepping approach. The robot model is divided into two parts: a state space model with intermediate control inputs and algebraic nonlinear equations relating the true and the intermediate control inputs. The robot parameters are assumed unknown. First, a suitable change of variable is applied to the traditional robot dynamics to reveal the strict feedback structure of this state space model. Next, a three-step adaptive backstepping control design method is applied to obtain the intermediate control input expressions. Finally the true control inputs are found by solving iteratively the nonlinear equations that relates intermediate and true control inputs. The adaptation algorithms are based on the projection method and guarantee that estimated parameters converge and remain inside predefined domains. The proposed design strategy is tested in simulation. The results show good tracking performances despite large parameter variations.

Published in:

Control and Automation, 2009. MED '09. 17th Mediterranean Conference on

Date of Conference:

24-26 June 2009