By Topic

Incremental Evaluation of Visible Nearest Neighbor Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarana Nutanong ; The University of Melbourne, Victoria ; Egemen Tanin ; Rui Zhang

In many applications involving spatial objects, we are only interested in objects that are directly visible from query points. In this paper, we formulate the visible k nearest neighbor (VkNN) query and present incremental algorithms as a solution, with two variants differing in how to prune objects during the search process. One variant applies visibility pruning to only objects, whereas the other variant applies visibility pruning to index nodes as well. Our experimental results show that the latter outperforms the former. We further propose the aggregate VkNN query that finds the visible k nearest objects to a set of query points based on an aggregate distance function. We also propose two approaches to processing the aggregate VkNN query. One accesses the database via multiple VkNN queries, whereas the other issues an aggregate k nearest neighbor query to retrieve objects from the database and then re-rank the results based on the aggregate visible distance metric. With extensive experiments, we show that the latter approach consistently outperforms the former one.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 5 )