By Topic

Characterization of Wet Batch Cleaning Process in Advanced Semiconductor Manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Singhal, S. ; Dept. of Mech. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Elkhatib, B. ; Stuber, J. ; Sreenivasan, S.V.
more authors

Wet cleaning of silicon wafers is an essential step in the fabrication of semiconductor devices. With diminishing feature and, consequently, critical particle sizes, cleaning requirements have become even more stringent. Hence, it is imperative that an understanding of the cleaning process be obtained in order to achieve the desired cleaning efficiencies. Ultrasonic and megasonic cleaning baths are the norm in advanced fabrication lines for batch cleaning of wafers. The fluid flow in these baths is quite complex and strongly influences removal of contaminant matter from the wafer surface. To better understand the effect of fluid flow on cleaning of polymeric contaminants, chemical etch experiments have been conducted using a cleaning solution on tetra-ethyl orthosilicate (TEOS) blanket wafers. The experimental results indicate a certain degree of nonuniformity and asymmetry in an otherwise symmetric system. A qualitative analysis of the observed nonuniformity has been conducted through computational fluid dynamics (CFD) simulations of the flow within the tank using a commercial CFD tool, FLUENT 6.2. An analogous heat transfer model has been set up with the CFD model, to simulate mass transfer effects resulting from the etching of the TEOS film in the experiments. A comprehensive sensitivity analysis has also been conducted within the CFD model for various parameters that might be responsible for the experimental asymmetry.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:22 ,  Issue: 3 )