By Topic

Robust Monitoring of an Electric Vehicle With Structured and Unstructured Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Djeziri, M.A. ; Lab. d''Autom., Genie Inf. et Signal, Ecole Polytech. Univ. de Lille, Villeneuve-d''Ascq, France ; Merzouki, R. ; Bouamama, B.O.

This paper deals with a robust fault-detection and isolation (FDI) technique, which is applied to the traction system of an electric vehicle, in the presence of structured and unstructured uncertainties. Due to the structural and multidomain properties of the bond graph, the generation of a nonlinear model and residuals for the studied system with adaptive thresholds is synthesized. The parameters and structured uncertainties are identified by using a least-square algorithm. A super-twisting observer is used to estimate both unstructured uncertainties and unknown inputs. Cosimulation with real experimental data shows the robustness of the residuals to the considered uncertainties and their sensitivity to the faults.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 9 )