By Topic

Improved Method for Object Recognition in Complex Scenes by Fusioning 3-D Information and RFID Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cerrada, C. ; Dept. of Syst. & Software Eng., Univ. Nac. de Educ. a Distancia, Madrid, Spain ; Salamanca, S. ; Adan, A. ; Perez, E.
more authors

This work analyzes a new method for object recognition in complex scenes combining vision-based techniques applied to the 3-D data obtained using range sensors and object identification coming from radio frequency tags (radio frequency identification (RFID) technology). Three-dimensional vision-based algorithms for object recognition have many restrictions in practical applications, i.e., uncertainty, incapability for real-time tasks, etc., but they work well for pose determination once the object is recognized. On the other hand, RFID technology allows us to detect the presence of specific objects in a scene, but it cannot provide their localization, at least not with the accuracy required in applications such as ours. In this paper, we present a new and powerful recognition method obtained by fusing both techniques. The phases of the method are described, and abundant experimentation results are included. An in-depth performance analysis has been carried out to demonstrate the recognition improvements achieved by the algorithm when RFID assistance is considered. It helps to confirm the robustness of this fusion approach and prove its effectiveness. A final discussion is included, concerning what should be the most adequate size of the object database for optimal algorithm exploitation.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 10 )