By Topic

From a Federated to an Integrated Automotive Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

This paper describes an integrated system architecture for automotive electronic systems based on multicore systems-on-chips (SoCs). We integrate functions from different suppliers into a few powerful electronic control units using a dedicated core for each function. This work is fueled by technological opportunities resulting from recent advances in the semiconductor industry and the challenges of providing dependable automotive electronic systems at competitive costs. The presented architecture introduces infrastructure IP cores to overcome key challenges in moving to automotive multicore SoCs: a time-triggered network-on-a-chip with fault isolation for the interconnection of functional IP cores, a diagnostic IP core for error detection and state recovery, a gateway IP core for interfacing legacy systems, and an IP core for reconfiguration. This paper also outlines the migration from today's federated architectures to the proposed integrated architecture using an exemplary automotive E/E system.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:28 ,  Issue: 7 )