Cart (Loading....) | Create Account
Close category search window
 

Enhanced Evanescent Confinement in Multiple-Slot Waveguides and Its Application in Biochemical Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Haishan Sun ; Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA ; Antao Chen ; Dalton, Larry R.

The interaction of light propagating in the wave-guiding structures with the surrounding media through its evanescent field has been used to detect biochemical activities without labeling the target molecules. By introducing multiple slots in a dielectric waveguide, we found that a much stronger evanescent field could be achieved in the surrounding media while still maintaining good optical confinement. The experimental demonstration of microring resonator sensors using single-mode waveguides having three slots indicates a 5-fold increase in sensitivity for homogeneous sensing and more than 3-fold increase in sensitivity for surface sensing in comparison to those of a waveguide without slots. Numerical simulations suggest an even higher sensitivity enhancement (as high as 100 times) as more slots and larger waveguide widths are used.

Published in:

Photonics Journal, IEEE  (Volume:1 ,  Issue: 1 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.