By Topic

Identifying implicitly declared self-tuning behavior through dynamic analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hamoun Ghanbari ; Department of Computer Science, York University, Canada ; Marin Litoiu

Autonomic computing programming models explicitly address self management properties by introducing the notion of ldquoAutonomic Element. However, most of currently developed systems do not employ autonomic self-managing programming paradigms. Thus, a current challenge is to find mechanisms to identify the self-tuning behavior and self-tuning parameters which have implicitly been declared using non-autonomic elements, and to expose them for monitoring or to an analysis framework. Static analysis, although it shows a good potential, it results in many false positives. In this paper, we provide a mechanism to identify the tuning parameters more accurately through dynamic analysis.

Published in:

2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems

Date of Conference:

18-19 May 2009