By Topic

Automatic Change Detection in Very High Resolution Images With Pulse-Coupled Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fabio Pacifici ; Computer Science, Systems and Production Engineering Department, Tor Vergata University, Rome, Italy ; Fabio Del Frate

A novel approach based on pulse-coupled neural networks (PCNNs) for image change detection is presented. PCNNs are based on the implementation of the mechanisms underlying the visual cortex of small mammals, and, with respect to more traditional NNs architectures, such as multilayer perceptron, own interesting advantages. In particular, they are unsupervised and context sensitive. This latter property may be particularly useful when very high resolution images are considered as, in this case, an object analysis might be more suitable than a pixel-based one. The qualitative and more quantitative results are reported. The performance of the algorithm has been evaluated on a pair of QuickBird images taken over the test area of Tor Vergata University, Rome.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:7 ,  Issue: 1 )