By Topic

Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ray-Hua Horng ; Inst. of Precision Eng., Nat. Chung Hsing Univ., Taichung ; Shih-Ting Lin ; Yu-Li Tsai ; Mu-Tao Chu
more authors

In this letter, we report on the fabrication and photovoltaic characteristics of p-i-n GaN/InGaN thin-film solar cells. The thin-film solar cells were fabricated by removing sapphire using a laser lift-off technique and, then, transferring the remaining p-i-n structure onto a Ti/Ag mirror-coated Si substrate via wafer bonding. The mirror structure is helpful to enhance light absorption for a solar cell with a thin absorption layer. After the thin-film process for a conventional sapphire-based p-i-n solar cell, the device exhibits an enhancement factor of 57.6% in current density and an increment in conversion efficiency from 0.55% to 0.80%. The physical origin for the photocurrent enhancement in the thin-film solar cell is related to multireflection of light by the mirror structure.

Published in:

IEEE Electron Device Letters  (Volume:30 ,  Issue: 7 )