By Topic

Robust fault detection of dynamic systems via genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patton, R.J. ; Hull Univ., UK ; Chen, J. ; Liu, G.P.

This paper develops a new approach to the design of robust fault detection systems via a genetic algorithm. To achieve robustness, a number of performance indices are introduced. Some performance indices are expressed in the frequency domain to account for the frequency distributions of incipient faults, noise and modelling uncertainty. All objectives are then reformulated into a set of inequality constraints on performance indices. A genetic algorithm is thus used to search an optimal solution to satisfy these inequality constraints. The approach developed is applied to a flight control system example and results show that incipient sensor faults can be detected reliably in the presence of modelling uncertainty

Published in:

Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995. GALESIA. First International Conference on (Conf. Publ. No. 414)

Date of Conference:

12-14 Sep 1995