By Topic

Evolutionary Sampling and Software Quality Modeling of High-Assurance Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Drown, D.J. ; Florida Atlantic Univ., Boca Raton, FL, USA ; Khoshgoftaar, T.M. ; Seliya, N.

Software quality modeling for high-assurance systems, such as safety-critical systems, is adversely affected by the skewed distribution of fault-prone program modules. This sparsity of defect occurrence within the software system impedes training and performance of software quality estimation models. Data sampling approaches presented in data mining and machine learning literature can be used to address the imbalance problem. We present a novel genetic algorithm-based data sampling method, named evolutionary sampling, as a solution to improving software quality modeling for high-assurance systems. The proposed solution is compared with multiple existing data sampling techniques, including random undersampling, one-sided selection, Wilson's editing, random oversampling, cluster-based oversampling, synthetic minority oversampling technique (SMOTE), and borderline-SMOTE. This paper involves case studies of two real-world software systems and builds C4.5- and RIPPER-based software quality models both before and after applying a given data sampling technique. It is empirically shown that evolutionary sampling improves performance of software quality models for high-assurance systems and is significantly better than most existing data sampling techniques.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:39 ,  Issue: 5 )