By Topic

Forward Error Correction-Based 2-D Layered Multiple Description Coding for Error-Resilient H.264 SVC Video Transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Xiang ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ce Zhu ; Chee Kheong Siew ; Yuanyuan Xu
more authors

In this paper, we propose a novel 2-D layered multiple description coding (2DL-MDC) for error-resilient video transmission over unreliable networks. The proposed 2DL-MDC scheme allocates multiple description sub-bitstreams of a 2-D scalable bitstream to two network paths with unequal loss rates. We formulate the 2-D scalable rate-distortion problem and derive the expected distortion for the proposed scheme. To minimize the end-to-end distortion given the total rate budget and packet loss probabilities, we need to optimally allocate source and channel rates for each hierarchical sublayer of the scalable bitstream. The conventional Lagrangian multiplier method can be utilized to solve this problem but with overwhelming computational complexity. Therefore, we consider the use of the genetic algorithm to solve the rate-distortion optimization problem. The simulation results verify that the proposed method is able to achieve significant performance gain as opposed to the conventional equal rate allocation method.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:19 ,  Issue: 12 )